多普勒盲区下基于GM-PHD的雷达多目标跟踪算法

尉强 刘忠

引用本文:
Citation:

多普勒盲区下基于GM-PHD的雷达多目标跟踪算法

    作者简介: 尉 强(1982–),男,山西襄汾人,博士研究生,主要研究方向为指挥自动化。E-mail: yangqihong0354@163.com;刘   忠(1962–),男,山东龙口人,教授, 博士生导师,研究方向为指挥自动化。E-mail: 554745138@qq.com.
    通讯作者: 尉强, yangqihong0354@163.com
  • 基金项目:

    国家部委基金

  • 中图分类号: TP393.08

A Radar Multi-target Tracking Algorithm Based on Gaussian Mixture PHD Filter under Doppler Blind Zone

    Corresponding author: Wei Qiang, yangqihong0354@163.com ;
  • Fund Project: The National Ministries Foundation

    CLC number: TP393.08

  • 摘要: 在多普勒雷达目标跟踪过程中,由于多普勒盲区(DBZ)的存在使得跟踪问题更为复杂。针对该问题,该文基于高斯混合概率假设密度(GM-PHD)提出了一种适用于多普勒盲区的多目标跟踪算法。该算法在常规检测概率模型中引入最小可检测速度(MDV)信息,并将该检测概率模型应用于传统GM-PHD更新方程中,推导出多普勒盲区下的GM-PHD更新方程。蒙特卡罗仿真实验结果表明:与只有多普勒量测信息的传统GM-PHD算法相比,新算法在较小的MDV条件下能够明显提高雷达对运动目标的跟踪性能。
  • 图 1  传感器/目标几何杂波率为12.6×10–6时杂波分布

    Figure 1.  Sensor/target clutter distribution when the geometric clutter rate is 12.6×10–6

    图 2  两目标的多普勒与不同的MDVs的时间关系

    Figure 2.  The relationship of two goals Doppler with diffierent MDVs

    图 3  真实航迹与不同算法的估计(MDV=1)

    Figure 3.  Real track and estimation of different algorithms (MDV=1)

    图 4  不同滤波器跟踪性能比较(MDV=1)

    Figure 4.  Comparison of tracking performance of different fliters (MDV=1)

    图 5  不同滤波器跟踪性能比较(MDV=3)

    Figure 5.  Comparison of tracking performance of different fliters (MDV=3)

    图 6  滤波器的绝对时间和相对时间性能比较

    Figure 6.  The comparison of absolute time and relative time performance of filters

  • [1] Ronald P S Mahler. Statistical Multisource-Multitarget Information Fusion[M]. Norwood, MA: ARTECH HOUSE, 2007: 45–49.
    [2] 范红旗, 卢大威, 刘本源. 多源多目标统计信息融合[M]. 北京: 国防工业出版社, 2013: 12–16.Fan Hong-qi, Lu Da-wei, and Liu Ben-yuan. Statistical Multisource-Multitarget Information Fusion[M]. Beijing: National Defense Industry Press, 2013: 12–16.
    [3] Ouyang C, Ji H-B, and Tian Y. Improved Gaussian mixture CPHD tracker for multitarget tracking[J].IEEE Transactions on Signal Processing, 2013, 49(2): 1177–1191.
    [4] Beard M, Vo B-T, Vo B-N,et al.. A partially uniform target birth model for Gaussian mixture PHD/CPHD filtering[J].IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(4): 2835–2844. doi: 10.1109/TAES.2013.6621859
    [5] Beard M, Vo B-T, and Vo B-N. Multitarget filtering with unknown clutter density using a bootstrap GMCPHD filter[J].IEEE Signal Processing Letters, 2013, 20(4): 323–326. doi: 10.1109/LSP.2013.2244594
    [6] Ristic B, Clark D, and Gordon N. Calibration of multi-target tracking algorithms using non-cooperative targets[J].IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 390–398.
    [7] Battistelli G, Chisci L, Fantacci C,et al.. Consensus CPHD filter for distributed multitarget tracking[J].IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 508–520. doi: 10.1109/JSTSP.2013.2250911
    [8] Uney M, Clark D, and Julier S. Distributed fusion of PHD filters via exponential mixture densities[J].IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 521–531. doi: 10.1109/JSTSP.2013.2257162
    [9] Vo Ba-Tuong, Vo Ba-Ngu, and Cantoni Antonio. The cardinality balanced multi-target multi-bernoulli filter and its implementations[J].IEEE Transactions on Signal Processing, 2009, 57(2): 409–423. doi: 10.1109/TSP.2008.2007924
    [10] Vo B-N, Singh S, and Doucet A. Sequential Monte Carlo methods for multi-target filtering with random finite sets[J].IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1224–1245. doi: 10.1109/TAES.2005.1561884
    [11] Kohlleppel R. Ground moving target tracking of PAMIR detections with a Gaussian mixture-PHD filter[C]. 2011 12th International Radar Symposium, Leipzig, 2011: 193–198.
    [12] Kohlleppel R. Ground target tracking with signal adaptive measurement error covariance matrix[C]. 15th IEEE International Conference on Information Fusion, Singapore, 2012: 550–557.
    [13] Mallick M, Krishnamurthy V, and Vo B-N. Integrated Tracking, Classification, and Sensor Management[M]. John Wiley & Sons Inc., 2013: 21–23.
    [14] Koch W. On exploiting 'negative' sensor evidence for target tracking and sensor data fusion[J].Information Fusion, 2007, 8(1): 28–39. doi: 10.1016/j.inffus.2005.09.002
    [15] Ulmke M, Erdinc O, and Willett P. GMTI Tracking via the Gaussian mixture cardinalized probability hypothesis density filter[J].IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(4): 1821–1833. doi: 10.1109/TAES.2010.5595597
    [16] Vo B N and Ma W K. The Gaussian mixture probability hypothesis density filter[J].IEEE Transactions on Signal Processing, 2006, 54(11): 4091–4104. doi: 10.1109/TSP.2006.881190
    [17] Hu Zijun. A study of multi-target tracking based on random finite set using radar[D]. [Ph.D. dissertation], Xidian University, 2015: 5–9.
    [18] Vo B T, Vo B N, and Cantoni A. Analytic implementations of the cardinalized probability hypothesis density filter[J].IEEE Transactions on Signal Processing, 2007, 55(7): 3553–3567. doi: 10.1109/TSP.2007.894241
    [19] Yoon J H, Kim D Y, Bae S H,et al.. Joint initialization and tracking of multiple moving objects using Doppler information[J].IEEE Transactions on Signal Processing, 2011, 59(7): 3447–3452. doi: 10.1109/TSP.2011.2132720
  • [1] 欧阳成陈晓旭华云 . 改进的最适高斯近似概率假设密度滤波. 雷达学报, 2013, 2(2): 239-246. doi: 10.3724/SP.J.1300.2013.13010
    [2] 裴家正黄勇董云龙何友陈小龙 . 杂波背景下基于概率假设密度的辅助粒子滤波检测前跟踪改进算法. 雷达学报, 2019, 8(3): 355-365. doi: 10.12000/JR18060
    [3] 赵耀东吕晓德李纪传向茂生 . 无源雷达多普勒谱分析实现动目标检测的方法. 雷达学报, 2013, 2(2): 247-256. doi: 10.3724/SP.J.1300.2012.20081
    [4] 陈小龙关键何友 . 微多普勒理论在海面目标检测中的应用及展望. 雷达学报, 2013, 2(1): 123-134. doi: 10.3724/SP.J.1300.2012.20102
    [5] 陈世超罗丰胡冲聂学雅 . 基于多普勒谱非广延熵的海面目标检测方法. 雷达学报, 2019, 8(3): 344-354. doi: 10.12000/JR19012
    [6] 陈希信 . 天波雷达后多普勒自适应波束形成. 雷达学报, 2016, 5(4): 373-377. doi: 10.12000/JR15124
    [7] 闫召爱胡雄郭商勇程永强郭文杰潘艺升 . 星载钠荧光多普勒激光雷达性能分析. 雷达学报, 2015, 4(1): 99-106. doi: 10.12000/JR14140
    [8] 赵军田斌朱岱寅 . 基于PAST处理的机载双基雷达自适应角度-多普勒补偿算法. 雷达学报, 2017, 6(6): 594-601. doi: 10.12000/JR17053
    [9] 胡程廖鑫向寅曾涛 . 一种生命探测雷达微多普勒测量灵敏度分析新方法. 雷达学报, 2016, 5(5): 455-461. doi: 10.12000/JR16090
    [10] 刘振魏玺章黎湘 . 一种新的随机PRI脉冲多普勒雷达无模糊MTD算法. 雷达学报, 2012, 1(1): 28-35. doi: 10.3724/SP.J.1300.2013.10063
    [11] 关欣仲利华胡东辉丁赤飚 . 一种基于RSPWVD-Hough 变换的无源雷达多普勒展宽补偿方法. 雷达学报, 2013, 2(4): 430-438. doi: 10.3724/SP.J.1300.2013.13073
    [12] 邓冬虎张群罗迎李松朱仁飞 . 双基地ISAR 系统中分辨率分析及微多普勒效应研究(英文). 雷达学报, 2013, 2(2): 152-167. doi: 10.3724/SP.J.1300.2013.13039
    [13] 赵现斌严卫艾未华陆文马烁 . 一种用于海洋要素反演的机载SAR多普勒中心偏移计算方法. 雷达学报, 2019, 8(3): 391-399. doi: 10.12000/JR19020
    [14] 刘玉琪易建新万显荣程丰饶云华龚子平 . 数字电视外辐射源雷达多旋翼无人机微多普勒效应实验研究. 雷达学报, 2018, 7(5): 585-592. doi: 10.12000/JR18062
    [15] 李万春黄成峰 . 基于角度和多普勒频率的外辐射源定位系统的接收器最优航迹分析. 雷达学报, 2014, 3(6): 660-665. doi: 10.12000/JR14118
    [16] 杨祥立徐德伟黄平平杨文 . 融合相干/非相干信息的高分辨率SAR图像变化检测. 雷达学报, 2015, 4(5): 582-590. doi: 10.12000/JR15073
    [17] 刘俊凯李健兵马梁陈忠宽蔡益朝 . 基于矩阵信息几何的飞机尾流目标检测方法. 雷达学报, 2017, 6(6): 699-708. doi: 10.12000/JR17058
    [18] 李永祯胡万秋孙豆李重威 . 一种基于极化信息的机载拖曳式诱饵存在性检测与抑制方法研究. 雷达学报, 2016, 5(6): 666-672. doi: 10.12000/JR16115
    [19] 李杭梁兴东张福博吴一戎 . 基于高斯混合聚类的阵列干涉SAR三维成像. 雷达学报, 2017, 6(6): 630-639. doi: 10.12000/JR17020
    [20] 韩金旺张子敬刘军赵永波 . 基于贝叶斯的高斯杂波背景下MIMO雷达自适应检测算法. 雷达学报, 2019, 8(4): 501-509. doi: 10.12000/JR18090
  • 加载中
图(6)
计量
  • 文章访问数:  702
  • HTML浏览量:  26
  • PDF下载量:  592
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-10
  • 录用日期:  2017-01-10
  • 网络出版日期:  2017-03-15
  • 刊出日期:  2017-02-28

多普勒盲区下基于GM-PHD的雷达多目标跟踪算法

    通讯作者: 尉强, yangqihong0354@163.com
    作者简介: 尉 强(1982–),男,山西襄汾人,博士研究生,主要研究方向为指挥自动化。E-mail: yangqihong0354@163.com;刘   忠(1962–),男,山东龙口人,教授, 博士生导师,研究方向为指挥自动化。E-mail: 554745138@qq.com
  • ①. 海军工程大学电子工程学院   武汉   430033
  • ②. 空军预警学院   武汉   430019
基金项目:  国家部委基金

摘要: 在多普勒雷达目标跟踪过程中,由于多普勒盲区(DBZ)的存在使得跟踪问题更为复杂。针对该问题,该文基于高斯混合概率假设密度(GM-PHD)提出了一种适用于多普勒盲区的多目标跟踪算法。该算法在常规检测概率模型中引入最小可检测速度(MDV)信息,并将该检测概率模型应用于传统GM-PHD更新方程中,推导出多普勒盲区下的GM-PHD更新方程。蒙特卡罗仿真实验结果表明:与只有多普勒量测信息的传统GM-PHD算法相比,新算法在较小的MDV条件下能够明显提高雷达对运动目标的跟踪性能。

English Abstract

    • 多普勒信息对雷达运动目标跟踪性能的改善一直备受关注,通过目标多普勒观测信息,跟踪器能够更为精确地估计航迹参数。然而雷达的多普勒盲区(Doppler Blind Zone, DBZ)使得目标可能出现连续漏检问题,致使多目标跟踪性能恶化,因而提高雷达在多普勒盲区下的多目标跟踪性能对提高多普勒雷达探测性能具有重要意义。

      近年来,基于随机有限集(Random Finite Set, RFS)的多目标跟踪算法[1,2]为多目标跟踪问题的研究提供了新的思路,因可避免复杂的数据关联,备受国内外学者推崇。该类算法已扩展到更一般的航迹形成[3]、自适应出生强度[4]和杂波密度[5]、传感器空间配准[6]和分布式融合[7,8]等一系列问题。本文基于RFS框架下的高斯混合概率假设密度(Gaussian Mixture Probability Hypothesis Density, GM-PHD)滤波器[9,10]对多普勒盲区下的多目标跟踪问题开展研究。

      围绕多普勒盲区下的多目标跟踪问题,文献[1113]通过将多普勒盲区建模成依赖目标状态的检测概率,将GM-PHD滤波器应用到多普勒盲区中的目标跟踪,估计的目标数量更稳定。然而,它们仅利用了与盲区有关的最小可检测速度(Minimum Detectable Velocity, MDV)信息,未充分利用多普勒量测,且未提供严格的推导和详细的实现步骤。一般地,多普勒盲区的宽度取决于MDV,因而,MDV为重要跟踪参数。为此,本文通过将考虑了MDV的检测概率模型引入GM-PHD更新式中,提出了多普勒盲区下带MDV的GM-PHD跟踪算法。

    • 假设第k时刻目标的状态为 ${x}_k = \left[ {{x_k}} \ \right.{y_k} \ {z_k}$ ${\left. {{{\dot x}_k} \ {{\dot y}_k} \ {{\dot z}_k}} \right]^{\rm{T}}}$,( $x_k,\;y_k,\;z_k$)为位置分量,( $\dot x_k,\;\dot y_k,\;\dot z_k$)为速度分量, ${\left[ \cdot \right]^{\rm T}}$表示矩阵转置操作。传感器状态为 ${x}_k^s = {\left[ {\begin{array}{*{20}{c}} {x_k^s} & {y_k^s} & {z_k^s} & {\dot x_k^s} & {\dot y_k^s} & {\dot z_k^s} \end{array}} \right]^{\rm{T}}}$。分别令 $\dot r_k$和 $\dot r_{{\rm{c}},k}$为多普勒量测以及该状态对应位置处的杂波多普勒[14],则

      $\dot r_k^ \,\,{\rm{ = }}\frac{{\left( {{x_k} - x_k^s} \right)\left( {{{\dot x}_k} - \dot x_k^s} \right) + \left( {{y_k} - y_k^s} \right)\left( {{{\dot y}_k} - \dot y_k^s} \right) + \left( {{z_k} - z_k^s} \right)\left( {{{\dot y}_k} - \dot z_k^s} \right)}}{{\sqrt {{{\left( {{x_k} - x_k^s} \right)}^2} + {{\left( {{y_k} - y_k^s} \right)}^2} + {{\left( {{z_k} - z_k^s} \right)}^2}} }}$

      $\dot r_{{\rm c},k} = \! - \frac{{\dot x_k^s\left( {x_k - x_k^s} \right) + \dot y_k^s\left( {y_k - y_k^s} \right) + \dot z_k^s\left( {z_k - z_k^s} \right)}}{{\sqrt {{{\left( {x_k - x_k^s} \right)}^2} + {{\left( {y_k - y_k^s} \right)}^2} + {{\left( {z_k - z_k^s} \right)}^2}} }} \ \ \ $

      杂波凹口函数为目标多普勒与杂波多普勒之差nc ,可表示为:

      $n_{\rm{c}} \!=\! \dot r_k \!-\! \dot r_{{\rm{c}},k} \!=\! \frac{{\dot x_k\left( {x_k \!-\! x_k^s} \right) \!+\! \dot y_k\left( {y_k \!-\! y_k^s} \right) \!+\! \dot z_k\left( {z_k \!-\! z_k^s} \right)}}{{\sqrt {{{\left( {x_k \!-\! x_k^s} \right)}^2} \!\!+\!\! {{\left( {y_k \!-\! y_k^s} \right)}^2} \!\!+\!\! {{\left( {z_k \!-\! z_k^s} \right)}^2}} }}$

      众所周知,凹口技术在抑制杂波的同时也会对低多普勒频率的运动目标的检测造成影响[15]。检测概率 $p_{{\rm{D}},k}\left( {x} \right)$通常是目标状态的函数,特别对地面运动目标指示雷达而言,多普勒盲区会严重影响雷达检测概率。当 $n_{\rm{c}} < {\rm{MDV}}$时, $p_{{\rm{D}},k}\left( {x} \right)$趋于0;相反当 $n_{\rm{c}} \gg {\rm{MDV}}$时, $p_{{\rm{D}},k}\left( {x} \right)$趋近饱和值pD。因而,检测概率可以表示为:

      $p_{{\rm D},k}\left( {x} \right) \approx p_{\rm D}\left[ {1 - {{\rm e}^{ - {{\left( {n_{\rm c}\left( x \right)/{\rm{MDV}}} \right)}^2}\log 2}}} \right]$

      其中,pD为未考虑DBZ的常规检测概率。对nc在 ${{\hat {{x}}}_{k|k - 1}} = {\left[ {{{\hat x}_{k|k - 1}} \ {{\hat y}_{k|k - 1}} \ {{\hat z}_{k|k - 1}} \ {{\hat {\dot {x}}}_{k|k - 1}} \ {{\hat {\dot {y}}}_{k|k - 1}} \ {{\hat {\dot {z}}}_{k|k - 1}}} \right]^{\rm{T}}}$处进行1阶泰勒近似,有

      $\begin{array}{l}n_{\rm{c}}\left( {{{x}}_k} \right) \approx n_{\rm{c}}\left( {{\hat {{x}}}_{k|k - 1}} \right){\rm{ + }}\frac{{\partial n_{\rm{c}}}}{{\partial {{x}}_k}}| {_{{{x}}_k = \hat {{x}}_{k|k - 1}}} \left( {{{x}}_k - {\hat {{x}}}_{k|k - 1}} \right)\\\;\;\;\;\;\;\;\;\;\;\; = n_{\rm{c}}\left( {{\hat {{x}}}_{k|k - 1}} \right) \\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; - \frac{{\partial n_{\rm{c}}}}{{\partial {{x}}_k}}| {_{{{x}}_k = \hat {{x}}_{k|k - 1}}} {\hat {{x}}}_{k|k - 1}{\rm{ + }}\frac{{\partial n_{\rm{c}}}}{{\partial {{x}}_k}}| {_{{{x}}_k = \hat {{x}}_{k|k - 1}}} {{x}}_k\\\;\;\;\;\;\;\;\;\;\;\; = {y_{{\rm{f}}}}\left( {{\hat {{x}}}_{k|k - 1}} \right) - {{H}}_{\rm{f}}\left( {{\hat {{x}}}_{k|k - 1}} \right){{x}}_k\end{array}$

      其中, $y_{\rm{f}}\left( {{{\hat {{x}}}}_{k|k - 1}} \right)$表示伪造量测函数,其表达式和对应的伪造量测矩阵分别为:

      $y_{\rm{f}} \!=\! y_{\rm{f}}\left( {{{\hat {{x}}}}_{k|k - 1}} \right) \!=\! n_{\rm{c}}\left( {{{\hat {{x}}}}_{k|k - 1}} \right) \!+\! {{H}}_{\rm{f}}\left( {{{\hat {{x}}}}_{k|k - 1}} \right){{\hat {{x}}}}_{k|k - 1}$

      $ {{H}}_{\rm{f}}\!\left( {{{\hat {{x}}}}_{k|k - 1}} \right) \!\!=\!\! - \frac{{\partial n_{\rm{c}}}}{{\partial {{x}}_k}}| {_{{{x}_k = {\hat {{x}}_{k|k - 1}}}} \!\!=\!\! {\left[\!\!\! {\begin{array}{*{20}{c}}{{n_1}}\!\! &\!\! {{n_2}}\!\! &\!\! {{n_3}} \!\!&\!\! {{n_4}} \!\!&\!\! {{n_5}} \!\!&\!\! {{n_6}}\end{array}}\!\!\! \right]^{\rm{T}}}} $

      其中

      ${n_1} = - \left( {\hat {\dot {x_{k|k - 1}}} - \hat n_{\rm{c}}\cos {{\hat a}_k}\cos {{\hat e}_k}} \right)/{\hat r_k} $, ${n_2} = - \left( {\hat {\dot y_{k|k - 1}} - \hat n_{\rm{c}}\sin {{\hat a}_k}\cos {{\hat e}_k}} \right)/{\hat r_k}$, ${n_3} = - $ $ \left( {\hat {\dot z_{k|k - 1}} - \hat {n_{\rm{c}}}\sin {{\hat e}_k}} \right)\Big/{\hat r_k}$, ${n_4} = - \cos {\hat a_k}\cos {\hat e_k}$, ${n_5} = - \sin {\hat a_k}\cos {\hat e_k}$, ${n_6} = - \sin {\hat e_k}$, ${\hat r_k} \mathop = \limits^\Delta \sqrt {{{\left( {\hat x_{k|k - 1} - x_k^s} \right)}^2} + {{\left( {\hat y_{k|k - 1} - y_k^s} \right)}^2} + {{\left( {\hat z_{k|k - 1} - z_k^s} \right)}^2}} $, ${\hat a_k} \mathop = \limits^\Delta {\rm{atan2}}\left[ {\left( {\hat y_{k|k - 1} - y_k^s} \right),\left( {\hat x_{k|k - 1} - x_k^s} \right)} \right]$, ${\hat e_k} \mathop = \limits^\Delta \arctan \left[ {\left( {\hat z_{k|k - 1} - z_k^s} \right)\Big/\sqrt {{{\left( {\hat x_{k|k - 1} - x_k^s} \right)}^2} + {{\left( {\hat y_{k|k - 1} - y_k^s} \right)}^2}} } \right]$, 。

      将近似 $n_{\rm{c}}\left( {{x}} \right)$代入到式(4)中可得

      $p_{{\rm{D}},k}\!\left( \!{{x}} \!\right) \!=\! p_{\rm{D}}\! \!\left[ {1 \!-\! {c_{\rm{f}}}{\cal N}\!\left( \!{y_{\rm{f}}\left( {{{{\hat {{x}}}}_{k|k - 1}}} \!\right);\!{{H}}_{\rm{f}}\!\left(\! {{{{\hat {{x}}}}_{k|k - 1}}} \!\right){{x}},{R_{\rm{f}}}} \right)} \right]$

      其中, ${c_{\rm{f}}} = {\rm{MDV}}\sqrt {{{π}} /\log 2} $表示归一化因子, ${R_{\rm{f}}} = {\rm{MD}}{{\rm{V}}^2}/\left( {2\log 2} \right)$表示伪造量测在多普勒域中的方差。

    • 为实现落入多普勒盲区情况下的目标稳定跟踪,本节提出了一种考虑MDV和多普勒信息的GM-PHD滤波器。下面给出该滤波器的设计思路和具体实现过程。假设PHD滤波器的后验强度 ${\upsilon _k}\left( {{x}} \right)$传递通过如下预测和更新两步进行[16,17]

      ${\upsilon _{k|k - 1}}\left( {{x}} \right) = \int {{p_{{{\rm{D}},k}}}\left( {{ζ}} \right)} {f_{k|k - 1}}\left( {{{x}}|{{ζ}}} \right){\upsilon _{k - 1}}\left( {{ζ}} \right){\rm d}{{ζ}} \\ \quad \quad \quad \quad \quad +\!\! \int {{\beta _{k|k - 1}}\left( {{{x}}|{{ζ}}} \right)} {\upsilon _{k - 1}}\left( {{ζ}} \right){\rm d}{{ζ}} + {\gamma _k}\left( {{x}} \right)$

      $ {\upsilon _k}\left( {{x}} \right) \!=\! \left[ {1 \!-\! {p_{{{\rm{D}},k}}}\left( {{x}} \right)} \right]\!{\upsilon _{k|k - 1}}\left( {{x}} \right) \\ \quad \quad \quad \ +\!\! \sum\limits_{{{z}} \in {Z}_k} {\frac{{{p_{{{\rm{D}},k}}}\left( {{x}} \right)g_k\left( {{{z}}|{{x}}} \right){\upsilon _{k|k - 1}}\left( {{x}} \right)}}{{{κ} _k\left( {{z}} \right) \!+\!\!\displaystyle \!\int\! {{p_{{{\rm{D}},k}}}\left( {{x}} \right)g_k\left( {{{z}}|{{x}}} \right){\upsilon _{k|k - 1}}\left( {{x}} \right){\rm d}{{x}}} }}} $

      其中, ${\gamma _k}\left( \cdot \right)$表示第k时刻出生目标RFS ${{{Γ}} _k}$的强度, ${\beta _{k|k - 1}}\left( {{{x}}|{{ζ}}} \right)$表示由前一状态 ${{ζ}}$得到的衍生目标RFS ${B_{k|k - 1}}\left( {{ζ}} \right)$的强度, $\kappa _k\left( {{z}} \right)$表示杂波RFS $\kappa_k $的强度。假设雷达的位置量测和多普勒量测不相关,且位置量测函数为线性函数,则其观测似然函数 $g_k\left( {{{z}}|{{x}}} \right)$为:

      $g_k\left( {{{z}}|{{x}}} \right) = {\cal N}\left( {{{{y}}_{\rm{c}}};{{H}}_{{\rm{c}},k}{{x}},{{R}}_{{\rm{c}},k}} \right){\cal N}\left( {{y_{\rm{d}}};h_{\rm{d}}({{x}}),\sigma _{\rm{d}}^2} \right)$

      其中, z 为传统量测,包括位置分量 ${{y}_{\rm{c}}}$和多普勒分量 ${{y}_{\rm{d}}}$, ${{H}}_{{\rm{d}},k}$为对应位置分量的观测矩阵, ${{R}}_{{\rm{c}},k}$为对应位置分量的观测噪声协方差矩阵, $h_{\rm{d}}( \cdot )$是非线性的多普勒观测函数, $\sigma _{\rm{d}}$是多普勒量测噪声的标准差。

      由式(9)和式(10)可知,检测概率对更新强度有一定程度的影响,但不影响预测强度。因此仅需关注推导考虑MDV信息后的更新强度公式。下面引述一个定理[18]

      定理 已知合适维度的 H , R , m , P ,且假定矩阵 R P 为半正定矩阵,则

      ${\cal N}\left( {{{z}};{{Hx}},{{R}}} \right){\cal N}\left( {{{x}};{{m}},{{P}}} \right)\\ \quad \ =\! {\cal N}\!\left( \!{{{z}};{{Hm}},{{S}}} \right)\!{\cal N}\!\left( \!{{x};{{m}} \!\!+\!\! {{G}}\left(\! {{{z}} \!\!-\!\! {{Hm}}} \!\right),{{P}}\! \!-\!\! {{GS}}{{{G}}^{\rm{T}}}} \right)$

      式中, ${{S}} = {{HP}}{{{H}}^{\rm{T}}} + {{R}}$, ${{G}} = {{P}}{{{H}}^{\rm{T}}}{{{S}}^{ - 1}}$。

      假定第k 时刻的预测强度具有以下GM形式:

      ${\upsilon _{k|k - 1}}\left( {{x}} \right) = \sum\limits_{j = 1}^{{J_{k|k - 1}}} {w_{k|k - 1}^{\left( j \right)}{\cal N}\left( {{{x}};{{m}}_{k|k - 1}^{\left( j \right)},{{P}}_{k|k - 1}^{\left( j \right)}} \right)} $

      其中, $w_{k|k - 1}^{\left( j \right)}$是预测分量的权重、 ${{m}}_{k|k - 1}^{\left( j \right)}$是预测分量的状态, ${{P}}_{k|k - 1}^{\left( j \right)}$是预测分量的协方差。将式(8)的检测概率以及式(11)的似然函数代入式(10),运用上述定理整理后最终可得以下更新强度公式:

      $\begin{array}{l}{\upsilon _k}\left( {{x}} \right) = {\sum\limits_{j = 1}^{{J_{k|k}}} {w_{k|k}^{\left( j \right)}N} \left( {{{x}};{{m}}_{k|k}^{\left( j \right)},{{P}}_{k|k}^{\left( j \right)}} \right)} \\\;\;\;\;\;\;\;\;\; \; = \sum\limits_{j = 1}^{{J_{k|k - 1}}} {w_{k|k,0}^{\left( j \right)}{\cal N}\left( {{{x}};{{m}}_{k|k,0}^{\left( j \right)},{{P}}_{k|k,0}^{\left( j \right)}} \right)}\\ \quad \quad \quad \quad +\! \sum\limits_{{{z}} \in {{Z}}_k} \!\!{\sum\limits_{j = 1}^{{J_{k|k - 1}}}\!\! {w_{k|k}^{\left( j \right)}\left( \!{{z}} \!\right)\!{\cal N}\!\left(\! {{{x}};{{m}}_{k|k}^{\left( j \right)}\left( \!{{z}} \!\right),{{P}}_{k|k}^{\left( j \right)}\left(\! {{z}} \right)} \!\right)} } \\ \quad \quad \quad \quad +\sum\limits_{j = 1}^{{J_{k|k - 1}}} {w_{k|k,{\rm f}}^{\left( j \right)}{\cal N}\left( {{{x}};{{m}}_{k|k,{\rm f}}^{\left( j \right)},{{P}}_{k|k,{\rm f}}^{\left( j \right)}} \right)} \\ \quad \quad \quad \quad + \!\!\sum\limits_{{{z}} \in {{Z}}_k}\!\!{\sum\limits_{j = 1}^{{J_{k|k - 1}}} \!\!{w_{k|k}^{\left( j \right)}\left(\! {{{{z}}_{\rm f}}}\! \right)\!{\cal N}\!\left( \!{{{x}};{{m}}_{k|k}^{\left( j \right)}\left( {{{{z}}_{\rm f}}} \right),{{P}}_{k|k}^{\left( j \right)}\left(\! {{{{z}}_{\rm f}}} \!\right)} \!\right)} } \end{array}$

      式中, z f 表示增强量测。分量 $\left\{w_{k|k,0}^{\left( j \right)},\;{{m}}_{k|k,0}^{\left( j \right)},\;{{P}}_{k|k,0}^{\left( j \right)}\right\}$由常规丢失量测更新得到, $\left\{\!w_{k|k}^{\left( j \right)}(\!{{z}}\!),\;{{m}}_{k|k}^{\left( j \right)}\!({{z}}\!),\;{{P}}_{k|k}^{\left( j \right)}(\!{{z}}\!)\!\right\}$由常规量测更新得到, $\left\{w_{k|k,{\rm f}}^{\left( j \right)},\;{{m}}_{k|k,{\rm f}}^{\left( j \right)},\;{{P}}_{k|k,{\rm f}}^{\left( j \right)}\right\}$由伪量测更新得到, $\left\{w_{k|k}^{\left( j \right)}(\!{{{z}}_{\rm f}}\!),\;{{m}}_{k|k}^{\left( j \right)}(\!{{{z}}_{\rm f}}\!),\;{{P}}_{k|k}^{\left( j \right)}(\!{{{z}}_{\rm f}}\!)\right\}$由增强量测更新得到,即

      $\!\!\!\!\!\!\!\!\!\!\! w_{k|k,0}^{\left( j \right)} = \left( {1 - p_{\rm{D}}} \right)w_{k|k - 1}^{\left( j \right)} \quad \quad \quad \quad $

      ${{m}}_{k|k,0}^{\left( j \right)} = {{m}}_{k|k - 1}^{\left( j \right)}, \quad \quad {{P}}_{k|k,0}^{\left( j \right)} = {{P}}_{k|k - 1}^{\left( j \right)}$

      通过对位置量测和多普勒量测序贯处理可得分量 $\left\{ {w_{k|k}^{\left( j \right)}\left( {{z}} \right),{{m}}_{k|k}^{\left( j \right)}\left( {{z}} \right),{{P}}_{k|k}^{\left( j \right)}\left( {{z}} \right)} \right\}$,即

      $w_{k|k}^{\left( j \right)}\left( {{z}} \right) = \frac{{p_{\rm{D}}w_{k|k - 1}^{\left( j \right)}q_k^{\left( j \right)}\left( {{z}} \right)}}{{\kappa _k\left( {{z}} \right) + {w_{{\rm{sum}}}}}} \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad $

      ${{m}}_{k|k}^{\left( j \right)}\left( {{z}} \right) \!= \! {{m}}_{k|k}^{\left( j \right)}\left( {{{{y}}_{\rm{c}}}} \right) \!+ \! {{G}}_{{\rm d},k}^{\left( j \right)}\left( {{{{y}}_{\rm{c}}}} \right)\!\!\left( {{{{y}}_{\rm{d}}} \!- \! h_{\rm{d}}\left( {{{m}}_{k|k}^{\left( \!j \right)}\left( {{{{y}}_{\rm{c}}}} \right)} \right)}\! \right)$

      ${{P}}_{k|k}^{\left( j \right)}\left( {{z}} \right) = \left[ {{{I}} - {{G}}_{{\rm{d}}|k}^{\left( j \right)}\left( {{{{y}}_{\rm{c}}}} \right){{{H}}_{\rm{d}}}\left( {{{m}}_{k,k}^{\left( j \right)}\left( {{{{y}}_{\rm{c}}}} \right)} \right)} \right]{{P}}_{k|k}^{\left( j \right)}\left( {{{{y}}_{\rm{c}}}} \right)$

      式中,均值 ${{m}}_{k|k}^{\left( j \right)}\left( {{z}} \right)$和协方差 ${{P}}_{k|k}^{\left( j \right)}\left( {{z}} \right)$分别用量测 z (其包括位置 y c和多普勒观测 y d)更新,均值 ${{m}}_{k|k}^{\left( j \right)}\left( {{{{y}}_{\rm{c}}}} \right)$和协方差 ${{P}}_{k|k}^{\left( j \right)}\left( {{{{y}}_{\rm{c}}}} \right)$分别由位置量测 y c更新,即

      ${{m}}_{k|k}^{\left( j \right)}\left( {{{{y}}_{\rm{c}}}} \right) = {{m}}_{k|k - 1}^{\left( j \right)} + {{G}}_{{\rm{c}},k}^{\left( j \right)}\left( {{{y}}_{\rm{c}} - {{H}}_{{\rm{c}},k}{{m}}_{k|k - 1}^{\left( j \right)}} \right)$

      ${{P}}_{k|k}^{\left( j \right)}\left( {{{{y}}_{\rm{c}}}} \right) = \left[ {{{I}} - {{G}}_{{\rm{c}},k}^{\left( j \right)}{{H}}_{{\rm{c}},k}} \right]{{P}}_{k|k - 1}^{\left( j \right)} \quad \quad \quad \quad \quad $

      对应位置分量的增益和新息协方差分别为:

      ${{G}}_{{\rm{c}},k}^{\left( j \right)} = {{P}}_{k|k - 1}^{\left( j \right)}{{H}}_{{\rm{c}},k}{\left[ {{{Ξ}}_{{\rm{c}},k}^{\left( j \right)}} \right]^{ - 1}} \quad \quad \ \ $

      ${{Ξ}}_{{\rm{c}},k}^{\left( j \right)} = {{H}}_{{\rm{c}},k}{{P}}_{k|k - 1}^{\left( j \right)}{\left[ {{{H}}_{{\rm{c}},k}} \right]^{\rm{T}}} + {{R}}_{{\rm{c}},k}$

      在式(18)和式(19)中的对应多普勒分量的增益 ${{G}}_{{\rm{d}},k}^{\left( j \right)}\left( {{{{y}}_{\rm{c}}}} \right)$则为:

      ${{G}}_{{\rm{d}},k}^{\left( j \right)}\left( {{{{y}}_{\rm{c}}}} \right) \!=\! {{P}}_{k|k}^{\left( j \right)}\left( {{{{y}}_{\rm{c}}}} \right){{H}}_{\rm{d}}\left( {{{m}}_{k|k}^{\left( j \right)}\left( {{{{y}}_{\rm{c}}}} \right)} \right)\!\!{\left[ {{{Ξ}}_{{\rm{d}},k}^{\left( j \right)}\left( {{{{y}}_{\rm{c}}}} \right)} \right]^{ - 1}}$

      其中,相应的新息协方差为:

      ${{Ξ}}_{{\rm{d}},k}^{\left( j \right)}\left( {{{{y}}_{\rm c}}} \right) = {{H}}_{\rm{d}}\left( {{{m}}_{k|k}^{\left( j \right)}\left( {{{{y}}_{\rm c}}} \right)} \right){{P}}_{k|k}^{\left( j \right)}\left( {{{{y}}_{\rm{c}}}} \right)\\ \quad \quad \quad \quad \quad \cdot {\left[ {{{H}}_{\rm d}\left( {{{m}}_{k|k}^{\left( j \right)}\left( {{{{y}}_{\rm{c}}}} \right)} \right)} \right]^{\rm{T}}} + \sigma _{\rm{d}}^2$

      在式(19)、式(24)和式(25)中, ${{H}}_{\rm{d}}\left( {{{m}}_{k|k}^{\left( j \right)}\left( {{{{y}}_{\rm{c}}}} \right)} \right)$为 $\dot r_k$对 ${{x}}_k$在 ${{m}}_{k|k}^{\left( j \right)}\left( {{{{y}}_{\rm{c}}}} \right)$处的雅克比矩阵,为:

      ${{H}}_{\rm{d}}\left( {{{m}}_{k|k}^{\left( j \right)}\left( {{{{y}}_{\rm{c}}}} \right)} \right) \!=\!\! \frac{{\partial \dot r_k}}{{\partial {{x}}_k}}\left| {_{{{x}}_k = {{m}}_{k|k}^{\left( j \right)}\left( {{{{y}}_{\rm{c}}}} \right)}} \right. \\ \quad \quad \quad \quad \quad \quad \ \ \ \!= \left[\!\! {\begin{array}{*{20}{c}}{h_1^{(j)}}\! &\! {h_2^{(j)}} \!&\! {h_3^{(j)}} \!& \!{h_4^{(j)}} \!&\! {h_5^{(j)}} \!&\! {h_6^{(j)}}\end{array}} \!\!\right]$

      其中,

      ${{m}}_{k|k}^{\left( j \right)}\left( {{{{y}}_{\rm{c}}}} \right)\! = \!{\left[ {\begin{array}{*{20}{c}} {\hat x_{k|k}^{(j)}} \!& \!{\hat y_{k|k}^{(j)}} \!&\! {\hat z_{k|k}^{(j)}} \!& \!{\hat {\dot x_{k|k}}^{(j)}} \!&\! {\hat {\dot y_{k|k}}^{(j)}} \!&\! {\hat {\dot z_{k|k}}^{(j)}} \end{array}} \right]^{\rm{T}}}$ $h_1^{(j)} \!=\!\! \left[ {\left( {\hat {\dot x_{k|k}}^{(j)} \!\!-\!\! \dot x_k^s} \right) \!\!-\!\! h_{\rm{d}}\!\left(\! {{{m}}_{k|k}^{\left( j \right)}\left( {{{{y}}_{\rm{c}}}} \right)}\! \right)\!\cos \hat a_k^{(j)}\cos \hat e_k^{(j)}} \right]\!\Big/\hat r_k^{(j)}$ $h_2^{(j)} \!= \!\!\left[ {\left( {\hat {\dot y_{k|k}}^{(j)}\!\! -\!\! \dot y_k^s} \right) \!\!-\!\! h_{\rm{d}}\left( \!{{{m}}_{k|k}^{\left( j \right)}\left( \!{{{{y}}_{\rm{c}}}} \right)} \right)\sin \hat a_k^{(j)}\cos \hat e_k^{(j)}} \!\right]\!\Big/\hat r_k^{(j)}$ $h_3^{(j)} = \left[ {\left( {\hat {\dot z_{k|k}}^{(j)} \!\!-\!\! \dot z_k^s} \right) \!\!- h_{\rm{d}}\left( {{{m}}_{k|k}^{\left( j \right)}\left( {{{{y}}_{\rm{c}}}} \right)} \right)\sin \hat e_k^{(j)}} \right]\Big/\hat r_k^{(j)}$ $h_4^{(j)} \!\!=\!\cos \hat a_k^{(j)}\!\cos \hat e_k^{(j)}$, $h_5^{(j)} \!\!=\! \sin \hat a_k^{(j)}\!\cos \hat e_k^{(j)}, $ $h_6^{(j)} \!\!=\! \sin \hat e_k^{(j)},$ $\hat r_k^{(j)} \!= \! \sqrt {{{\left( {\hat x_{k|k}^{(j)} \! - \!x_k^s} \right)}^2} \! \!+ \! \! {{\left( {\hat y_{k|k}^{(j)} \! - \! y_k^s} \right)}^2} \! \!+ \! \! {{\left( {\hat z_{k|k}^{(j)} - z_k^s} \right)}^2}} $ $\hat a_k^{(j)} = {\rm{atan2}}\left[ {\left( {\hat y_{k|k}^{(j)} - y_k^s} \right),\left( {\hat x_{k|k}^{(j)} - x_k^s} \right)} \right]$

      $\hat e_k^{(j)} \!\!= \! \arctan \! \! \left[ \! {\left( {\hat z_{k|k}^{(j)} \! \! - \! \! z_k^s} \right) \!\Big/ \!\sqrt {{{\left( \! {\hat x_{k|k}^{(j)} \! \!- \!\! x_k^s} \!\right)}^2} \!\! \!+ \! \!{{\left( \! {\hat y_{k|k}^{(j)} \! \!- \! \! y_k^s} \!\right)}^2}} } \right]$

      分量 $\left\{ {w_{k|k,{\rm{f}}}^{\left( j \right)},{{m}}_{k|k,{\rm{f}}}^{\left( j \right)},{{P}}_{k|k,{\rm{f}}}^{\left( j \right)}} \right\}$的计算过程如下:

      $ w_{k|k,{\rm{f}}}^{\left( j \right)} = \frac{{p_{\rm{D}}}}{{1 - p_{\rm{D}}}}{c_{\rm f}}\,{\cal N}\left( {y_{\rm{f}}\left( {{{m}}_{k|k - 1}^{\left( j \right)}} \right)} \right).;\\ \quad \quad \quad \left. {{{{H}}_{\rm{f}}}\left( {{{m}}_{k|k - 1}^{\left( j \right)}} \right){{m}}_{k|k - 1}^{\left( j \right)},{{Ξ}}_{{\rm{f}},k}^{\left( j \right)}} \right)w_{k|k,0}^{\left( j \right)} $

      ${{m}}_{k|k,{\rm{f}}}^{\left( j \right)} \!=\!\! {{m}}_{k|k - 1}^{\left( j \right)}\!\! +\!\! {{K}}_{{\rm{f}},k}^{\left( j \right)}\!\left( \! {y_{\rm{f}}\left( \!{{{m}}_{k|k - 1}^{\left( j \right)}} \! \right) \!\!- \! \! {{H}}_{\rm{f}}\!\left( \! {{{m}}_{k|k - 1}^{\left( j \right)}} \! \right)\!\!{{m}}_{k|k - 1}^{\left( j \right)}} \!\right)$

      $\hspace{-35pt}{{P}}_{k|k,{\rm{f}}}^{\left( j \right)} = \left[ {{{I}} - {{K}}_{{\rm{f}},k}^{\left( j \right)}{{H}}_{\rm{f}}\left( {{{m}}_{k|k - 1}^{\left( j \right)}} \right)} \right]{{P}}_{k|k - 1}^{\left( j \right)}$

      其中,相应的增益 ${{K}}_{{\rm{f}},k}^{\left( j \right)}$为:

      ${{K}}_{{\rm{f}},k}^{\left( j \right)} = {{P}}_{k|k - 1}^{\left( j \right)}{{H}}_{\rm{f}}\left( {{{m}}_{k|k - 1}^{\left( j \right)}} \right){\left[ {{{Ξ}} _{{\rm{f}},k}^{\left( j \right)}} \right]^{ - 1}}$

      式中,相应的新息协方差为:

      ${{Ξ}} _{{\rm{f}},k}^{\left( j \right)}\! =\! {{H}}_{\rm{f}}\left(\! {{{m}}_{k|k - 1}^{\left( j \right)}} \!\right){{P}}_{k|k - 1}^{\left( j \right)}{\left[\! {{{H}}_{\rm{f}}\left( {{{m}}_{k|k - 1}^{\left( j \right)}} \right)} \!\right]^{\rm{T}}} \!+\! {R_{\rm{f}}}$

      在分量 $\left\{ {w_{k|k}^{\left( j \right)}\left( {{z}} \right),{{m}}_{k|k}^{\left( j \right)}\left( {{z}} \right),{{P}}_{k|k}^{\left( j \right)}\left( {{z}} \right)} \right\}$基础上,进一步对伪量测更新可得分量 $\left\{ {w_{k|k}^{\left( j \right)}\left( {{z_{\rm{f}}}} \right),} \right.$ $\left. {{m}_{k|k}^{\left( j \right)}\left( {{z_{\rm{f}}}} \right),{P}_{k|k}^{\left( j \right)}\left( {{z_{\rm{f}}}} \right)} \right\}$,其中

      $\!\!\! w_{k|k}^{\left( j \right)}\left( {{{{z}}_{\rm{f}}}} \right) = - {c_{\rm{f}}} \ {\cal N}\Big( {{y_{\rm{f}}}} \Big( {{{m}}_{k|k}^{\left( j \right)}\left( {{z}} \right)} \Big);\\ \quad \quad \quad \quad \quad \left. {{{{H}}_{\rm{f}}}\left(\! {{{m}}_{k|k}^{\left( j \right)}\left( \!{{z}} \!\right)} \!\right){{m}}_{k|k}^{\left( j \right)}\left(\! {{z}} \!\right),{{Ξ}} _{{\rm{f}},k}^{\left( j \right)}\left(\! {{z}}\! \right)} \right)w_{k|k}^{\left( j \right)}\left( {{z}} \!\right)$

      ${{m}}_{k|k}^{\left( j \right)}\left( {{{{z}}_{\rm{f}}}} \right) = {{m}}_{k|k}^{\left( j \right)}\left( {{z}} \right) + {{G}}_{{\rm{f}},k}^{\left( j \right)}\left( {{z}} \right)\\\quad \quad \quad \quad \quad \cdot \!\left( {y_{\rm{f}}\left( {{{m}}_{k|k}^{\left( j \right)}\left( {{z}} \right)} \right) \!\!-\!\! {{H}}_{\rm{f}}\left( {{{m}}_{k|k}^{\left( j \right)}\left( {{z}} \right)} \right)\!{{m}}_{k|k}^{\left( j \right)}\left( {{z}} \right)} \right)$

      ${{P}}_{k|k}^{\left( j \right)}\left( {{{{z}}_{\rm{f}}}} \right) \!=\! \left[ {{{I}} \!-\! {{G}}_{{\rm{f}},k}^{\left( j \right)}\left( {{z}} \right){{H}}_{\rm{f}}\left( {{{m}}_{k|k}^{\left( j \right)}\left( {{z}} \right)} \right)} \right]\!\!{{P}}_{k|k}^{\left( j \right)}\left( {{z}} \right)$

      其中,相应的增益 ${{G}}_{{\rm{f}},k}^{\left( j \right)}\left( {{z}} \right)$为:

      ${{G}}_{{\rm{f}},k}^{\left( j \right)}\left( {{z}} \right) = {{P}}_{k|k}^{\left( j \right)}\left( {{z}} \right){{H}}_{\rm{f}}\left( {{{m}}_{k|k}^{\left( j \right)}\left( {{z}} \right)} \right){\left[ {{{Ξ}}_{{\rm{f}},k}^{\left( j \right)}\left( {{z}} \right)} \right]^{ - 1}}$

      式中

      ${{Ξ}}_{{\rm{f}},k}^{\left( j \right)}\!\left( {{z}} \right) \!\!=\!\! {{H}}_{\rm{f}}\left( {{{m}}_{k|k}^{\left( j \right)}\left( {{z}} \right)} \right)\!\!{{P}}_{k|k}^{\left( j \right)}\left( {{z}} \right)\!{\left[\! {{{H}}_{\rm{f}}\left( {{{m}}_{k|k}^{\left( j \right)}\left( {{z}} \right)} \right)} \right]^{\rm{T}}} \!\!+\!\! {R_{\rm{f}}}$

      在式(17)分母中,将杂波强度表示为:

      $\kappa _k\left( {{z}} \right) = \kappa _{{\rm{c}},k}\left( {{{{y}}_{\rm{c}}}} \right)\kappa _{{\rm{d}},k}\left( {{{{y}}_{\rm{d}}}} \right)$

      其中, $\kappa _{{\rm{c}},k}\left( {{{{y}}_{\rm{c}}}} \right)$为位置分量的杂波强度, $\kappa _{{\rm{d}},k}\left( {{{{y}}_{\rm{d}}}} \right)$为多普勒分量对应的杂波强度, ${w_{{\rm{sum}}}}$为:

      ${w_{{\rm{sum}}}} \!=\! p_{\rm{D}}\!\sum\limits_{j = 1}^{{J_{k|k - 1}}}\! {w_{k|k - 1}^{\left( j \right)}q_k^{\left( j \right)}\left( {{z}} \right)} \!-\! {c_{\rm{f}}}p_{\rm{D}}\!\sum\limits_{j = 1}^{{J_{k|k - 1}}} {w_{k|k - 1}^{\left( j \right)}q_k^{\left( j \right)}\left( {{{{z}}_{\rm{f}}}} \right)} $

      式中,

      $\hspace{-6pt}q_k^{\left( j \right)}\left( {{z}} \right) = {\cal N}\left( {{{y}}_{\rm{c}};{{H}}_{{\rm{c}},k}{{m}}_{k|k - 1}^{\left( j \right)},{{Ξ}}_{{\rm{c}},k}^{\left( j \right)}} \right)\\ \quad \quad \quad \quad \; \cdot{\cal N}\left( {y_{\rm{d}};h_{\rm{d}}\left( {{{m}}_{k|k}^{\left( j \right)}\left( {{{{y}}_{\rm{c}}}} \right)} \right),{{Ξ}}_{{\rm{d}},k}^{\left( j \right)}\left( {{{{y}}_{\rm{c}}}} \right)} \right)$

      $\!\!\!\!\!\! q_{ k}^{\left( j \right)}\left( {{{{z}}_{\rm f}}} \right) = q_k^{\left( j \right)}\left( {{z}} \right){\cal N}\Big( {{y_{\rm{f}}}} \left( {{{m}}_{k|k}^{\left( j \right)}\left( {{z}} \right)} \right);\\ \quad \quad \quad \quad \ \!\!\!\! \left. {{{{H}}_{\rm{f}}}\left( {{{m}}_{k|k}^{\left( j \right)}\left( z \right)} \right){{m}}_{k|k}^{\left( j \right)}\left( {{z}} \right),{{Ξ}} _{{\rm{f}},k}^{\left( j \right)}\left( z \right)} \right)$

      值得指出的是,在量测更新后由于高斯分量数目随时间不断增长,还需要优化。为了便于描述,本节将以上所提出的考虑MDV和多普勒信息的GM-PHD滤波器简记为GM-PHD-D&MDV。当MDV=0时,cf=0,因此,所提的多普勒盲区下GM-PHD滤波器退化为带多普勒信息的GM-PHD(GM-PHD-D)滤波器[19]。代入检测概率到更新强度式(28)中,最终产生了数目成倍增加的高斯分量。换言之,除 ${J_{k|k - 1}}$个分量 $\left\{ {w_{k|k,0}^{\left( j \right)},{{m}}_{k|k,0}^{\left( j \right)},{{P}}_{k|k,0}^{\left( j \right)}} \right\}$和 $\left| {{{Z}}_k} \right|{J_{k|k - 1}}$个分量 $\left\{ {w_{k|k}^{\left( j \right)}\left( {{z}} \right),{{m}}_{k|k}^{\left( j \right)}\left( {{z}} \right),{{P}}_{k|k}^{\left( j \right)}\left( {{z}} \right)} \right\}$外,还得到了额外的相同数目的分量,包括 ${J_{k|k - 1}}$个分量 $\left\{ {w_{k|k,{\rm{f}}}^{\left( j \right)},\;{{m}}_{k|k,{\rm{f}}}^{\left( j \right)},\;{{P}}_{k|k,{\rm{f}}}^{\left( j \right)}} \right\}$和 $\left| {{{Z}}_k} \right|{J_{k|k - 1}}$个分量 $\left\{ {w_{k|k}^{\left( j \right)}\left( {{{{z}}_{\rm{f}}}} \right),\;{{m}}_{k|k}^{\left( j \right)}\left( {{{{z}}_{\rm{f}}}} \right),\;{{P}}_{k|k}^{\left( j \right)}\left( {{{{z}}_{\rm{f}}}} \right)} \right\}$。因为在更新后得到了更多数目的分量,提出的滤波器设计思路能更好地解释滤波器行为。分量 $\left\{ {w_{k|k,0}^{\left( j \right)},{{m}}_{k|k,0}^{\left( j \right)},{{P}}_{k|k,0}^{\left( j \right)}} \right\}$处理传统漏检情况、 $\left\{ {w_{k|k}^{\left( j \right)}\left( {{z}} \right),{{m}}_{k|k}^{\left( j \right)}\left( {{z}} \right),{{P}}_{k|k}^{\left( j \right)}\left( {{z}} \right)} \right\}$处理传统观测情况,而 $\left\{ {w_{k|k,{\rm{f}}}^{\left( j \right)},{{m}}_{k|k,{\rm{f}}}^{\left( j \right)},{{P}}_{k|k,{\rm{f}}}^{\left( j \right)}} \right\}$处理因多普勒盲区造成的目标漏检情况, $\left\{ {w_{k|k}^{\left( j \right)}\left( {{z_{\rm{f}}}} \right),} \right.$ $\left. {{m}_{k|k}^{\left( j \right)}\left( {{z_{\rm{f}}}} \right),\;{P}_{k|k}^{\left( j \right)}\left( {{z_{\rm{f}}}} \right)} \right\}$处理增强量测。对于第3种情况,当目标落入多普勒盲区内,将导致相应分量权值较大,因此避免了因剪枝门限导致删除相应航迹的问题,从这个意义上讲,漏检其实具有一定的价值。对于最后的情况,相应分量的权重 $w_{k|k}^{\left( j \right)}\left( {{{{z}}_{\rm{f}}}} \right)$为负数,见式(32)。在实际执行中,由于负权重小于剪枝门限,这些分量将被删掉,不过鉴于目标势的均值由总权值之和得到,将这些负权值赋予相应的正权重分量,即 $w_{k|k}^{\left( j \right)}\left( {{z}} \right) = w_{k|k}^{\left( j \right)}\left( {{z}} \right) + w_{k|k}^{\left( j \right)}\left( {{{{z}}_{\rm{f}}}} \right)$。此外,式(32)表示无论状态是否落入DBZ内,每一个分量将分裂为两个。为保存DBZ内对应目标的分量,仅在目标状态落入杂波凹口时才开始分裂,即状态 $\left( {{{m}}_{k|k - 1}^{\left( j \right)},{{P}}_{k|k - 1}^{\left( j \right)}} \right)$满足 ${n_{\rm{c}}}\left( {{m}_{k|k - 1}^{\left( j \right)}} \right) \le {\rm{MDV}} +$ $ \sqrt {{Ξ} _{{\rm{d}},k}^{\left( j \right)}} \ \ \ \Big( {\text 其 \ 中,}\ \ {{Ξ} _{{\rm{d}},k}^{\left( j \right)} \ = \ {{H}_{\rm{d}}} \ \ \left( {{m}_{k|k - 1}^{\left( j \right)}} \right)} \ \ {{P}_{k|k - 1}^{\left( j \right)}}$ $\left. {{{\left[ {{{H}_{\rm{d}}}\left( {{m}_{k|k - 1}^{\left( j \right)}} \right)} \right]}^{\rm{T}}} + \sigma _{\rm{d}}^{\rm{2}}} \right)$的分量才执行分裂,反之不产生分裂。为简便,该近似滤波器被记为GM-PHD-D&MDV1。

    • 仿真的仿真平台是MATLAB 8.0,本节通过与传统GM-PHD-D滤波器[11,12]和GM-PHD滤波器[13](未带多普勒观测)和GM-PHD-D&MDV滤波器的比较来验证所提出的GM-PHD-D&MDV1滤波器的有效性。本节假设在x-y平面内的各目标均为线性高斯动态方程

      ${{x}}_k = {{{F}}_{k - 1}}{{x}}_{k - 1} + {{{v}}_{k - 1}}$

      式中, ${{x}}_k = {\left[ {\begin{array}{*{20}{c}} {x_k} & {y_k} & {\dot x_k} & {\dot y_k} \end{array}} \right]^{\rm{T}}}$为目标k时刻的状态,对应的状态转移矩阵为:

      ${{{F}}_{k - 1}} = \left[ {\begin{array}{*{20}{c}}1 & {{\tau _k}}\\0 & 1\end{array}} \right] \otimes {{{I}}_2}$

      其中, In 为单位矩阵, ${\tau _k}$=1 s为采样间隔, $ \otimes $为内积, ${{{v}}_{k - 1}}$为均值为零的高斯白噪声,对应的协方差矩阵为:

      ${{{Q}}_{k - 1}} = \left[ {\begin{array}{*{20}{c}}{\tau _k^4/4} & {\tau _k^3/2}\\{\tau _k^3/2} & {\tau _k^2}\end{array}} \right] \otimes {\rm{blkdiag}}\left( {\sigma _x^2,\sigma _y^2} \right)$

      式中, $\sigma _x^2$和 $\sigma _y^2$分别表示在x轴和y轴方向的加速度过程噪声方差,blkdiag表示块对角矩阵。

      假设每个目标的存活概率为 ${p_{{\rm{S}},k}} = 0.99$,检测概率为 $p_{\rm{D}} = 0.98$,观测遵循式(29)的量测模型,其中, H c, k = [ I 2   02], ${{R}}_{{\rm c},k} = \sigma _{\rm c}^2{{{I}}_2}$, $\sigma _{\rm{d}} = 0.5\;{\rm{m/s}}$,位置分量的量测噪声标准差 $\sigma _{\rm{c}} = 10 \;{\rm{ m}}$。在监视区域[–1000, 1000](m)×[–1000, 1000](m)内假定杂波均匀分布,即 $\kappa _{{\rm c},k}( \cdot ) = \lambda _{\rm c}V \, u( \cdot )$, $\kappa _{{\rm d},k} = 1/2{v_{\max }}$, $\lambda _{\rm c}$表示单位体积的平均杂波数目,V表示监视区域的体积, $u( \cdot )$为均匀密度, ${v_{\max }} = 35\;{\rm{m/s}}$表示传感器可检测的最大速度。

      为方便比较,假定所有滤波器起始位置固定。剪枝参数为T=10–5,合并门限为U=4,以及最大高斯分量数目为Jmax=100。提取多目标的门限设置为0.5。初始目标状态分别设为 ${{x}}_{0,1} = \left[ { - 500\;{\rm{m}}} \quad \right.200\;{\rm{m}}$ ${\left. {10\;{\rm{m/s}} \ \ 0\;{\rm{m/s}}} \right]^{\rm{T}}}$ 和 ${{x}}_{0,2} = \left[ { - 500 \ {\rm{m \; - 200\;m \; 10 \ m/s}}} \right.$ ${\left. {0\;{\rm{m/s}}} \right]^{\rm{T}}}$, ${\sigma _x} = {\sigma _y} = 5\;{\rm{m/}}{{\rm{s}}^{\rm{2}}}$。假定初始目标RFS服从泊松分布,相应的强度为:

      ${\gamma _k}\left( {{x}} \right) = 0.1\sum\limits_{j = 1}^2 {{\cal N}\left( {{{x}};{{m}}_{\gamma ,k}^{\left( j \right)},{{P}}_{\gamma ,k}^{\left( j \right)}} \right)} $

      式中, ${{m}}_{\gamma ,k}^{\left( 1 \right)} = {\left[ { - 500\;\;{\rm{m}}\;\;\;200\;{\rm{m}}\;\;\;0\;\;{\rm{m/s}}\;\;0\;\;{\rm{m/s}}} \right]^{\rm{T}}}, $ ${{m}}_{\gamma ,k}^{\left( 2 \right)} =$ $ {\left[ { - 500\;{\rm{m}}\;- 200\;{\rm{m}}\;\;0\;{\rm{m/s}}\;\;0\;{\rm{m/s}}} \right]^{\rm{T}}}$, $ {{P}}_{\gamma ,k}^{\left( j \right)}=$blkdiag (100 m 100 m 25 m/s 25 m/s)2,j=1, 2。

      杂波、目标的真实航迹以及传感器位置以及两个目标的真实多普勒以及MDVs随时间的变化关系分别如图1图2所示。可以看到,当k=50时,两目标相对传感器切向飞行,因而,此时的多普勒接近0。此外,随着MDV的增大,目标通过多普勒盲区所需时间变长,导致漏检数目增多。

      图  1  传感器/目标几何杂波率为12.6×10–6时杂波分布

      Figure 1.  Sensor/target clutter distribution when the geometric clutter rate is 12.6×10–6

      图  2  两目标的多普勒与不同的MDVs的时间关系

      Figure 2.  The relationship of two goals Doppler with diffierent MDVs

      当MDV=1时,不同算法的估计结果如图3所示。当目标未处于多普勒盲区时,所有滤波器都能成功跟踪两个目标,其中GM-PHD滤波器性能最差,而其他三者有着相似性能。当目标落入多普勒盲区时,由MDV造成的漏检使得所有滤波器均无法跟踪目标。然而,当目标飞出多普勒盲区后,GM-PHD-D&MDV和GM-PHD-D&MDV1都可再次对目标进行跟踪,而传统GM-PHD和GM-PHD-D滤波器则无法对目标进行再次稳定跟踪。因此,考虑MDV和多普勒信息后的新滤波器能有效解决漏检问题,保持生成目标稳定航迹。

      图  3  真实航迹与不同算法的估计(MDV=1)

      Figure 3.  Real track and estimation of different algorithms (MDV=1)

      下面利用圆位置误差概率(Circular Position Error Probability, CPEP)对滤波器的航迹丢失性能进行评估,CPEP的数学表达式为:

      ${\rm{CPE}}{{\rm{P}}_k}\left( r \right) = \frac{1}{{\left| {{{{X}}_k}} \right|}}\sum\limits_{{{x}} \in {{{X}} _k}} {{\rho _k}\left( {{{x}},r} \right)} $

      其中, Xk 是真实目标状态的集合, H = [ I 2   02], ${\!\left\| {\cdot} \right\|_2}$是2范数,对于位置误差半径r, ${\rho _k}\left( {{{x}},r} \right) = $ ${\rm{Pr}}\left\{ {{{\left\| {{{{{H}} \hat {{x}}}} - {{Hx}}} \right\|}_2} > r \;{\rm{ for \, all }}\;{{\hat {{x}}}} \in {{{\hat {{X}}}}_k}} \right\}$, ${\rm{Pr}}( \cdot )$代表事件概率。另外,也计算最优子模式分配(Optimal Sub-Pattern Assignment, OSPA)性能。具体而言,CPEP用以评价航迹丢失性能;OSPA Card是指OSPA中势(Cardinality)估计误差。OSPA Loc是指OSPA的定位(Localization)误差。

      假设CPEP半径r=20 m, OSPA中参数的阶p=2和门限c=20 m,图4图5分别给出了利用Monte Carlo仿真得到的不同MDV值下的算法跟踪性能。从图中可以看出,引入了多普勒量测后的GM-PHD-D&MDV和GM-PHD-D&MDV1滤波器具有相似的CPEP和OSPA性能,且均优于未带多普勒量测的GM-PHD滤波器。在第2阶段,所有滤波器都不能跟踪多普勒盲区下的目标,这是因为高斯分量的权值小于状态提取门限,使得目标状态未被提取。原因是因为GM-PHD-D&MDV和GM-PHD-D&MDV1滤波器可根据式(27)获得高于剪枝门限的权重,从而避免航迹被门限删除。当多普勒盲区遮蔽目标时,传统GM-PHD-D和GM-PHD滤波器不具有有效保存对应目标分量的机制。因此当运动目标重新飞出多普勒盲区时,所提出的GM-PHD-D&MDV和GM-PHD-D&MDV1滤波器可重新跟踪上目标,而传统GM-PHD-D和GM-PHD滤波器却无法实现对目标的再跟踪。

      图  4  不同滤波器跟踪性能比较(MDV=1)

      Figure 4.  Comparison of tracking performance of different fliters (MDV=1)

      图  5  不同滤波器跟踪性能比较(MDV=3)

      Figure 5.  Comparison of tracking performance of different fliters (MDV=3)

      对提出的GM-PHD-D&MDV和GM-PHD-D&MDV1滤波器,需要注意以下3点:(1)GM-PHD-D&MDV1与GM-PHD-D&MDV的性能非常类似,不过,从图6可以看出前者速度快于后者,图6中,绝对时间为每次实验中100步执行的平均时间。比如,当MDV=1时,GM-PHD-D&MDV1仅需11.05 s,而GM-PHD-D&MDV却需22.87 s。相对而言,前者耗时仅是后者的48.29%。因此,GM-PHD-D&MDV1方法可有效降低计算量,性能损失并不明显。(2)随着MDV变大,多普勒盲区遮蔽后的CPEP并未降到第1阶段的最初水平,且第1阶段与第3阶段的CPEP差距增加,这是因为,漏检越多,分量保存难度越大,从而使得盲区遮蔽后目标失跟的概率升高。(3)对于较大的MDV,伪量测更新的分量权重更易高于提取门限,于是,虚假航迹数目将增加,从而,目标进入盲区前,OSPA性能中势分量将增大。换句话说,在MDV较大时,所提滤波器的性能改善的代价是增加了虚假航迹的数目。然而,在MDV较小时,改善跟踪性能的同时并未明显增多虚假航迹。此外,在第3阶段,GM-PHD和GM-PHD-D的OSPA中的定位性能似乎优于GM-PHD-D&MDV和GM-PHD-D&MDV1。实际上,造成这一现象的原因是对应的OSPA势性能接近门限值。从而,GM-PHD-D和GM-PHD滤波器的总体OSPA性能仍然较GM-PHD-D&MDV和GM-PHD-D&MDV1的性能差。

      图  6  滤波器的绝对时间和相对时间性能比较

      Figure 6.  The comparison of absolute time and relative time performance of filters

    • 本文针对多普勒盲区中的多目标跟踪问题,将考虑了MDV的检测概率模型代入到标准GM-PHD更新式中,提出了目标落入多普勒盲区情况下的GM-PHD运动目标跟踪算法,在改善跟踪性能的同时显著减少了虚假航迹数量,且跟踪时间较快。

参考文献 (19)

目录

    /

    返回文章
    返回